A time-aware spatio-textual recommender system
نویسندگان
چکیده
Location-Based Social Networks (LBSNs) allow users to post ratings and reviews and to notify friends of these posts. Several models have been proposed for Point-of-Interest (POI) recommendation that use explicit (i.e. ratings, comments) or implicit (i.e. statistical scores, views, and user influence) information. However the models so far fail to capture sufficiently user preferences as they change spatially and temporally. We argue that time is a crucial factor because user check-in behavior might be periodic and time dependent, e.g. check-in near work in the mornings and check-in close to home in the evenings. In this paper, we present two novel unified models that provide review and POI recommendations and consider simultaneously the spatial, textual and temporal factors. In particular, the first model provides review recommendations by incorporating into the same unified framework the spatial influence of the users’ reviews and the textual influence of the reviews. The second model provides POI recommendations by combining the spatial influence of the users’ check-in history and the social influence of the users’ reviews into another unified framework. Furthermore, for both models we consider the temporal dimension and measure the impact of time on various time intervals. We evaluate the performance of our models against 10 other methods in terms of precision and recall . The results indicate that our models outperform the other methods. © 2017 Elsevier Ltd. All rights reserved.
منابع مشابه
سیستم پیشنهاد دهنده زمینهآگاه برای انتخاب گوشی تلفن همراه با ترکیب روشهای تصمیمگیری جبرانی و غیرجبرانی
Recommender systems suggest proper items to customers based on their preferences and needs. Needed time to search is reduced and the quality of customer’s choice is increased using recommender systems. The context information like time, location and user behaviors can enhance the quality of recommendations and customer satisfication in such systems. In this paper a context aware recommender sys...
متن کاملEvolutionary User Clustering Based on Time-Aware Interest Changes in the Recommender System
The plenty of data on the Internet has created problems for users and has caused confusion in finding the proper information. Also, users' tastes and preferences change over time. Recommender systems can help users find useful information. Due to changing interests, systems must be able to evolve. In order to solve this problem, users are clustered that determine the most desirable users, it pa...
متن کاملContext-Aware Recommender Systems: A Review of the Structure Research
Recommender systems are a branch of retrieval systems and information matching, which through identifying the interests and requires of the user, help the users achieve the desired information or service through a massive selection of choices. In recent years, the recommender systems apply describing information in the terms of the user, such as location, time, and task, in order to produce re...
متن کاملFAST: Frequency-Aware Spatio-Textual Indexing for In-Memory Continuous Filter Query Processing
The ubiquity of spatio-textual data comes from the popularity of GPS-enabled smart devices, e.g., smartphones. These devices provide a platform that supports a wide range of applications that generate and process spatio-textual data. These applications include social networks, micro-blogs, web-search for local attractions and events, and location-aware ad targeting. These applications need to p...
متن کاملContext-aware Modeling for Spatio-temporal Data Transmitted from a Wireless Body Sensor Network
Context-aware systems must be interoperable and work across different platforms at any time and in any place. Context data collected from wireless body area networks (WBAN) may be heterogeneous and imperfect, which makes their design and implementation difficult. In this research, we introduce a model which takes the dynamic nature of a context-aware system into consideration. This model is con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Expert Syst. Appl.
دوره 78 شماره
صفحات -
تاریخ انتشار 2017